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Introduction

What is supervised learning? I

The term supervised learning describes the following setting for statistical
inference:

The given data contains clearly labelled input (feature/independent
variable) and output (target/dependent variable) elements.

When writing data as D = (xi, yi)
n
i=1 ∈ (X × Y)n, the yi are usually the

targets and the xis the feature vectors. Additionally, in machine learning
(ML), the outputs are sometimes called the labels of the inputs.

The goal of a supervised learning model is to characterize the
relationship between the input and output that allows for drawing
conclusions about a new output observation given the corresponding
input observations.
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Introduction

What is supervised learning? II

All supervised methods share a common framework: the goal is to
“learn” a function from a set F = {fθ : θ ∈ Θ}.

Here, fθ is a function of the inputs that is intended to return (a
transformation of) the output, and all that is unknown about it is the
value of θ.

Usually, F should also be defined in a way so that the preimage or
domain of all fθs contains X and the image of all fθs contains Y.
Common examples would be

fθ : Rd1 → Rd2 , for d1, d2 ∈ N>0

fθ : Rd → {0, 1} (or [0, 1])

fθ : Rd1 × Ω → Rd2 , for d1, d2 ∈ N>0 and some (product-) space
Ω of categorical inputs.
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Introduction

What is supervised learning? III

The goal of any supervised learning algorithm is to find the “optimal”
fθ ∈ F by choosing θ accordingly.

Here, again, one can choose to utilize probabilistic modelling or
approach the problem from a simply geometric/algebraic perspective.

Either way, we need a loss function - i.e. a distance or similarity
measure between the value of fθ and the output; with the kind of
measure depending on the perspective that one is taking.
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Introduction

What is supervised learning? IV

A classical approach to choosing the “optimal” fθ using a purely
geometric/algebraic perspective is choosing θ as

θ∗ = argminθ
1

n

n∑
i=1

L (fθ (xi) , yi) .

Meanwhile, when choosing the “optimal” fθ using probabilistic
approach, we require a Likelihood function L(θ;x).

Note that, last lecture, we showed that OLS (wich is equivalent to the
MLE approach), which utilizes squared loss, is equivalent to minimizing
the KL divergence for i.i.d. data and finite dimensional vector θ.
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Introduction Bayesian vs. Frequentist approach

A philosophical debate in probabilistic thinking

A fundamental philosophical question in probability and statistics is
“What does probability quantify?”

Here are the two most popular answers:
1 The frequency at which an event will (at least asymptotically) happen

# Frequentistic

2 One’s own uncertainty about an event happening # Bayesian

From these philosophical approaches, it follows that
1 In frequentist inference, a fixed, true, but unknown parameter θ0, the

value of which we want to find, is assumed.

2 In Bayesian inference, the parameter θ is modelled as a random
variable.
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Introduction Bayesian vs. Frequentist approach

Before we continue, a quick summary of Bayesian
inference!

Source: https://www.turing.com/kb/an-introduction-to-naive-bayes-algorithm-for-beginners
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Introduction Bayesian vs. Frequentist approach

A summary of Bayesian inference I
Generally, Bayesians are more concerned with the degree of uncertainty
of their parameter estimation than a true value. This is modelled by a so

called prior distribution. In turn, Bayesian inference consists of
considering all possible parameter values for a fixed set of data.

⇒ Inference is then based entirely on the posterior distribution of the
parameter given the data.
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Introduction Bayesian vs. Frequentist approach

A summary of Bayesian inference II

How do we get the posterior distribution? Bayes’ theorem:

P (A | B) =
P (B | A) · P (A)

P (B)

Specifically, given a prior distribution π(θ) and a sampling distribution
f(x|θ) (which, for our purposes, is always equal to the
frequentist Likelihood L(θ, x)), the posterior distribution is given
by

Π(θ|x) = f(x|θ)π(θ)∫
Θ f(x|θ)dµπ(θ)

}
this is the compound probability-

or mixture- distribution f(x)

Note that∫
Θ

f(x|θ)dµπ(θ) :=

{∫
Θ
f(x|θ)π(θ)dθ, if π(θ) is a density,∑
θ∈Θ f(x|θ)π(θ), if π(θ) is a probability function.

Hannah Schulz-Kümpel Multivariate Verfahren 10 / 73



Introduction Bayesian vs. Frequentist approach

How is a Baysian posterior distribution obtained? I

Given that
∫
Θ f(x|θ)dµπ(θ) is a constant, it immediately follows that

Π(θ|x) ∝ f(x|θ)π(θ) .

Sometimes, this is sufficient to find the parameter θ for the optimal
fθ, e.g. by maximizing the posterior probability.

Additionally, for some combination of prior and likelihoods, there exist
theoretical results telling us which distribution family the posterior will
belong to. Such priors are called conjugate to the distribution family
of the corresponding likelihood.
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Introduction Bayesian vs. Frequentist approach

How is a Baysian posterior distribution obtained? II

Mostly, however, Markov Chain Monte Carlo (MCMC) are used.
These algorithms are a class of methods used for sampling from
probability distributions whose probability density is proportional to a
known function.

MCMC algorithms exceed the scope of this class, but here is a quick visualization:

Source: Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: recent advances and comparative

study - Scientific Figure on ResearchGate. Available from here.

Hannah Schulz-Kümpel Multivariate Verfahren 12 / 73

https://www.researchgate.net/figure/Illustration-of-Markov-Chain-Monte-Carlo-method_fig1_334001505


6.1 Multivariate Regression

Multivariate Regression models

In a typical multivariate regression setting we choose a probabilistic
modelling approach and consider output Y and input vector X of p ∈ N
regressors with the following relation:

E[Y |X] = fθ(X) .

One of the most common type of multivariate regressions is the following:

Definition (Generalized Linear Model (GLM))

A generalized linear model (GLM) is a multivariate regression model
consisting of the following elements:

1 A linear predictor η(X) = β0 +
∑p

i=1 βi ·Xi

2 A link function g, which, together with the linear predictor defines
the regression function via fθ := g−1 ◦ η.

3 A distributional assumption Y ∼ D.
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6.1 Multivariate Regression Generalized Linear models

Generalized Linear Models

In a GLM, the pdf or pmf of the assumed distribution D should have
the expected value E[Y |X] as a parameter.

Let’s write µ = E[Y |X] and denote by
ν the vector of remaining distribution parameters (which may well be
an empty set) and

pY (µ, ν) the pdf or pmf of D.

Then, the likelihood is always given by

L(θ;x1, . . . , xn) =
n∏

i=1

pY
(
µ = fθ(xi), ν

)
.

The following slides now present three popular GLMs.
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6.1 Multivariate Regression Generalized Linear models

Linear regression

Linear regression is a generalized linear model with the following
specifications:

1 The link function g,is chosen as the identity function, so

fθ := η(X) = β0 +

p∑
i=1

βi ·Xi .

2 The distributional assumption Y ∼ N (E[Y |X], σ2)

Note that when applying OLS, we are only estimating θ to optimize
E[Y |X], so σ2 has to be estimated separately.

A nice asset of linear regression is how easily the β coefficients may be
estimated: “With all other features/regressors staying equal, the
conditional expectation of Y is expected to be βi greater if Xi is
increased by 1”.
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6.1 Multivariate Regression Generalized Linear models

Poisson regression

The poisson GLM is used in situations where the output/target/label
is a count variable, which means it represents the number of times an
event occurs within a fixed interval of time, space, or other contexts.

Poisson regression is a generalized linear model with the following
specifications:

The link function g,is chosen as the log function, so

fθ := eη(X) .

The distributional assumption Y ∼ Pois(E[Y |X])

Additionally, for T denoting the number of time etc. intervals, the
linear predictor is expanded to

η(X) = β0 +

p∑
i=1

βi ·Xi + log(T ) .
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6.1 Multivariate Regression Generalized Linear models

Logistic regression I

Logistic regression usually refers to a GLM with Binomial
distributional assumption an logit link-function.

It models the probability one of two mutually exclusive events taking
place.

Specifically, the target variable Y is assumed to follow a Binomial
distribution Bin

(
n, p(X)

)
, where the parameter p is modelled as a

function of the vector of regressors, with each of the the rows xi,
i = 1, . . . , n, of the data matrix X being an observation of an
independent copy of X.
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6.1 Multivariate Regression Generalized Linear models

Logistic regression II

n could be any natural number. However, in many contexts, logistic
regression simply refers to the case n = 1, i.e. Y ∼ Ber

(
p(X)

)
.

For those who are interested: logistic regression with n ∈ N>1 may
easily be fit

using the "Wilkinson-Rogers" format with the glm-function of the
R-package stats (frequentist inference) or

most tools for Bayesian inference.

In regression settings with a dichotomous target variable (i.e. a
categorical variables with two categories or levels) where the goal is to
make inference about the probability of one of these categories
occurring, logistic regression is defined as follows:
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6.1 Multivariate Regression Generalized Linear models

Logistic regression III

Logistic regression with dichotomous target variable
We assume that the target variable (recoded as Y ∈ {0, 1}, if necessary) is a
random variable with Y ∼ Ber

(
p(X)

)
, where X is the vector of p ∈ N regressors

that takes values in Rp. Additionally,

The model has a logit link function, i.e. we assume

logit
(
p(X)

)
= η(X) := β0 +

p∑
i=1

βi ·Xi

⇔ E[Y |X] = p(X) = inv. logit
(
η(X)

)
=

eη(X)

(1 + eη(X))
.

Note that, since p is the only parameter of the Bernulli distribution, no
additional assumptions are necessary.

The likelihood of this model is given by

L(θ, x) =
n∏

i=1

p(xi)
yi
(
1− p(xi)

)1−yi
.
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6.2 Classification Methods Introduction to Classification

Introduction I

In the context of Machine Learning (ML), classification refers to
models that assign observations to exactly one of K ∈ N different
classes/categories based on their features/variables/column entries.

Of course, it is important to remember that some models may be used
for a variety of purposes, so whether a specific method, s.a. logistic
regression is referred to as classification method or simply
regression/dimension reduction technique/etc. really depends on the
scientific context and what it is being used for.

A distinction that is often clearly possible, however, is the one between
supervised learning (which is used as synonym for classification) and
unsupervised learning. We recall:
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6.2 Classification Methods Introduction to Classification

Hannah Schulz-Kümpel Multivariate Verfahren 21 / 73



6.2 Classification Methods Introduction to Classification

Introduction II

You may think of classification as regression with a categorical target
variable.

Indeed, we hypothetically could turn any regression with a metric
target variable into a classifier by mapping the expected value of the
target variable (often called model prediction) onto a discrete space.

For example: Consider any regression with metric target variable
defined by the model function E[Y |X] = hθ(X), with hθ : Rp −→ R,
with p ∈ N denoting the number of regressors, and the mapping, for
some a, b, c, d ∈ R with a < b < c < d

m : R −→ {1, 2, 3}, x 7−→


1, if x ∈ [a, b],

2, if x ∈ (b, c),

3, if x ∈ [c, d].
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6.2 Classification Methods Introduction to Classification

Introduction III

In this setting, the function m ◦ hθ : Rp −→ {1, 2, 3} clearly assigns
each vector of regressors/features to one of three categories.

Example for linear regression:

Of course, this example is backwards - in supervised learning
classification, our data is already classified (i.e. we have no metric
target variable, but a categorical one) and we need to fit a model that
assigns new observations into the categories -
for which linear regression is rarely suitable!
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6.2 Classification Methods Introduction to Classification

Introduction IV

Some common classification methods are

Logistic regression

Naive Bayes

Discriminant Analysis (DA)

Decision Trees

Support Vector Machine

For the rest of this lecture, we will focus mostly at all highlighted methods
with special focus on Discriminant analysis and how linar discriminant
analysis (LDA) can be used for dimension reduction.
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6.2 Classification Methods Introduction to Classification

Another distinction: Discriminative vs. Generative

Source: https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning#generative-learning
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6.2 Classification Methods Introduction to Classification

Foundation of generative models I

In generative models, the exact same principles apply, but instead of
necessarily considering the parameter vector θ as a random variable,
we consider all categories into which observations can be classified as
realizations of a categorical random variable Y .

As we are familiar with from regression, X = (X1, . . . , Xp)
⊤, p ∈ N,

denotes the (random) vector of regressors/features/inputs, with each
of the rows xi, i = 1, . . . , n, of the data matrix X containing only the
regressors/features/inputs as columns being an observation of an
independent copy of X.

From this, we get the following setting, where K ∈ N denotes the
number of categories, which are coded as numbers from 1 to K, i.e.
Y takes values in {1, . . . ,K}:
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6.2 Classification Methods Introduction to Classification

Foundation of generative models II

Generative models: Notation

fX|Y (x|y)=̂f(x|y) sampling distribution (known, at least
as an estimate)

P (Y = y)=̂p(y) a priori-probability (known, at least
as an estimate)

f(x) =
∑K

y=1 f(x|y)p(y) mixture distribution (can be calculated from
the two previous items)

P (Y = y|X = x)=̂p(y|x) a posteriori-probability (unknown)

Note that, for simplicity’s sake, we will sometimes denote the

the a priori-probability of the kth, k ∈ {1, . . . ,K}, category as πk and

the sampling distribution conditional on the the kth, k ∈ {1, . . . ,K},
category as fk(x).
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6.2 Classification Methods Introduction to Classification

How can one classify based on P (Y | X)?

In both discriminative and generative classification models, we
consider the possible categories as possible realizations of a categorical
random variable Y .

We also get an estimate of the conditional distribution of Y given
the random vector or regressors/features/inputs X. Either

directly (in discriminative models)

from the sampling distribution fX|Y (x|y) combined with the a-priori
probability P (Y ) (in generative models)

But how do we get a classification rule from conditional distribution of
Y given X?

Intuitively, the goal is to minimize the error rate, i.e. the rate
at which observations are wrongly classified.
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6.2 Classification Methods Introduction to Classification

In Bayes classification, for example, this is achieved by assigning a new
observation to the class the posterior probability is maximal - more
later.

For now, let us focus on classification based on misclassification
probabilities.

Throughout, we denote by δ : Rp −→ {1, . . . ,K}, K ∈ N, a
specific, fixed classifier, i.e. a rule that assigns an observation
in Rp, p ∈ N, of X to exactly one of K categories/classes of Y .
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6.2 Classification Methods Introduction to Classification

Misclassification probabilities I

For g ∈ N we can write all individual probabilities that interest us in a
matrix/table as follows:

Note that, in the context of supervised learning, the matrix that
contains the frequencies instead of conditional probabilities in above
table as entries (i.e. the entries the corresponding square contingency
table) is called confusion matrix.
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6.2 Classification Methods Introduction to Classification

Misclassification probabilities II

In this context, we furthermore define

1 Confusion probability as, for r, s ∈ {1, . . . ,K},

εrs = P (δ(X) = s|Y = r) =

{∫
{x:δ(X)=s} f(x|r)dx, if f(x|r) is a pdf,∑
{x:δ(X)=s} f(x|r), if f(x|r) is a pmf.

2 Misclassification probability, given category/class r ∈ {1, . . . ,K}

εr = P (δ(X) ̸= r|Y = r) =
∑

s∈{1,...,K} ,
s ̸=r

εrs .
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6.2 Classification Methods Introduction to Classification

Misclassification probabilities III

3 (Total) Error rate as

ε = P (δ(X) ̸= Y ) .

4 Missclassification, given x ∈ Rp

ε(x) = P (δ(X) ̸= Y |X = x)

= 1− P (δ(X) = Y |X = x) .
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6.2 Classification Methods Introduction to Classification

Misclassification probabilities IV

The following holds, for r ∈ {1, . . . ,K}

ε = P (δ(X) ̸= Y ) =

K∑
r=1

P (δ(X) ̸= r|Y = r)p(r)

=

K∑
r=1

εrp(r) =

K∑
r=1

∑
s ̸=r

εrsp(r) .

and

ε = P (δ(X) ̸= Y ) =

∫
P (δ(X) ̸= Y |X = x) f(x)dx

=

∫
ε(x)f(x)dx .
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6.2 Classification Methods Introduction to Classification

Bayes and ML classification I

Bayes classification: Assign the object with feature vector x to the
class/category for which the a posteriori probability is maximal, i.e.:

δ(x) = r ⇔ P (r|x) = max
j∈{1,...,K}

P (j|x) r ∈ {1, . . . ,K}, x ∈ Rp .

ML classification: Assign the object with feature vector x to the
class/category for which density is maximal, i.e.:

δML(x) = r ⇔ f(x|r) = max
j∈{1,...,K}

f(x; j) r ∈ {1, . . . ,K}, x ∈ Rp .

Note: ML classification is equivalent to Bayes classification without
considering the a-priori probabilities or assuming equal a prior probabilities,
i.e. p(1) = . . . = p(K) = 1

K .
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6.2 Classification Methods Introduction to Classification

Bayes and ML classification II

The total error rate ε becomes minimal if ε(x) is minimal for all x.

Thus, the best rule in terms of the smallest possible total error rate is
obtained by minimizing ε(x) = 1− P (δ(X)|X = x).

⇒ Bayes classification minimizes the total error rate ε.
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6.2 Classification Methods Introduction to Classification

Bayes and ML classification III
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6.2 Classification Methods Introduction to Classification

Bayes and ML classification IV
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6.2 Classification Methods Introduction to Classification

Bayes and ML classification V

In certain settings, it may be suitable to assign specific confusions
more or less weight, which is achieved by defining a cost function

c : {1, . . . ,K} × {1, . . . ,K} → R≥0, (r, r̂) 7→ crr̂ ,

which gives the cost of assigning an object of class r to class r̂ (=̂ risk
or damage).

Clearly, it holds that crr̂ ≥ 0 and crr = 0 for any cost function c.
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6.2 Classification Methods Introduction to Classification

Bayes and ML classification VI

To determine the classifier δ, first consider the conditional risk given
X, defined as r(x) =

∑K
r=1 cr,δ(X)P (r|x)

The total risk is then calculated as follows:

R = EX

(
K∑
r=1

cr,δ(X)P (r|x)

)

=

∫ K∑
r=1

cr,δ(X)P (r|x)f(x)dx =

∫
r(x)f(x)dx

−→ Minimizing r(x) for each x results in a minimization of the total risk
R.
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6.2 Classification Methods Introduction to Classification

Bayes and ML classification VII

I.e. a new observation x is classified into a category s.t. the cost is
minimal:

δC(x) = r ⇔
K∑
k=1

ckrP (k|x) = min
j∈{1,...,K}

K∑
k=1

ckjP (k|x), r = 1, . . . ,K .

Special cases:
crr̂ = c, r ̸= r̂, i.e. each confusion has the same cost.
⇒ Bayes classification

crr̂ =
c

p(r) , i.e. the cost is proportional to the proportion of the
classes in the training data.
⇒ ML classification
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6.2 Classification Methods Logistic regression

Logistic regression for classification

How can logistic regression be used for classification?

If we "select∗ a threshhold value" in [0, 1] for p(X), we
automatically have a binary classification model,

specifically a discriminative one.

Example:
library(ggplot2)
library(boot)
library(stats)

set.seed(2023)
x1<-c(runif(55,0,0.35),runif(45,0.65,1))
data<-data.frame(x=x1,y=sapply(x1,function(x)rbinom(n=1,size=1,p=inv.logit(-6+12*x))),

category=as.factor(ifelse(inv.logit(logistic$coefficients[1]+logistic$coefficients[2]*x1)
<0.5,1,2))

)
logistic<-glm(y~x,binomial(),data)
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6.2 Classification Methods Logistic regression

Logistic regression: Example with one regressor
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6.2 Classification Methods Logistic regression

Logistic regression: Example with one regressor
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6.2 Classification Methods Logistic regression

How do we “select” the threshhold? I

There are different ways of selecting the threshhold.
A popular one is using the Receiver Operating characteristic (ROC), which
plots the true positive rate against the false positive rate.

Definition (True- and False positive rate)

Given a classification setting in which there are only two possible categories
(coded as 0 and 1), we define the

true positive rate as

TPF(T ) =

{∫
{x: f(x|Y=1)>T} f(x|Y = 1)dx, if f(x|r) is a pdf,∑
{x: f(x|Y=1)>T} f(x|Y = 1), if f(x|r) is a pmf.

false positive rate as

FPR(T ) =

{∫
{x: f(x|Y=0)>T} f(x|Y = 0)dx, if f(x|r) is a pdf,∑
{x: f(x|Y=0)>T} f(x|Y = 0), if f(x|r) is a pmf.
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6.2 Classification Methods Logistic regression

How do we “select” the threshhold? II

Figure: Source: cmglee, MartinThoma, Roc curve, CC BY-SA 4.0
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6.2 Classification Methods Logistic regression

How do we “select” the threshhold? III

While each line in the plot represents a possible model, each point on
said line represents a specific chosen thresshold value.

⇒ Choosing a threshhold value using the ROC means balancing between
a desirable TPF and FPF.

The ROC also gives rise to a popular measure of model performance
(far beyond the setting of logistic regression) area under the curve
(AUC), which calculates the integral beneath the Receiver Operating
characteristic (ROC).

Given that it calculates integrals under functions defined on
[0, 1]× [0, 1], the AUC always lies between 0 and 1, with an AUC of 1
indicating an optimal model.
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6.2 Classification Methods Logistic regression

Multinomial logistic regression I

While the term logistic regression is used to only refer to GLMs with
Binomial distributional assumption and dichotomous target variable in
many settings, in the context of Classification, multinomial logistic
regression, i.e. a GLM with logit link-function and multinomial
distributional assumption is often relevant!

Recall that, while the Binomial distribution models n ∈ N independent
trials of an experiment with two possible outcomes, the multinomial
distribution is a generalization to n independent trials with K ∈ N
mutually exclusive outcomes.

Equivalently, multinomial logistic regression extends the logistic
regression with dichotomous target variable to a setting where the
target variable has K classes/categories.
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6.2 Classification Methods Logistic regression

Multinomial logistic regression II

To do this, we first select a single class to serve as the baseline (or
reference category). W.l.o.g., we can select the K th class for this
role. Then we assume, for Yk, k ∈ {1, . . . ,K}, denoting the kth
category/class and ηk the corresponding linear predictior (i.e. we have
K different sets of β-coefficients)

E(Yk | X) = pk(X) =
eηk(X)

1 +
∑K−1

l=1 eηl(X)

for k = 1, . . . ,K − 1, and

E(YK | X) = pK(X) =
1

1 +
∑K−1

l=1 eηl(X)

It is not hard to show that, for j = 1, . . . ,K − 1,

log

(
pk(X)

pK(X)

)
= ηk(X).
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6.2 Classification Methods Logistic regression

Visualization of Logistic regressions with two regressors

Source: https://medium.com/data-sensitive/

multiple-or-multinomial-classification-using-logistic-regression-explained-using-mnist-dataset-19d2dfc10c94
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6.2 Classification Methods Naive Bayes (NB)

Naive Bayes (NB)

Naive Bayes refers to a class of generative classification models.

The "naive" element of this approach is the underlying assumption
that each of the regressors/features/inputs are conditionally
independent of each other given Y .

Definition (Conditional independence)

A set of random variables X1, . . . , Xm, m ∈ N, with possible values in
X 1, . . . ,Xm is called conditionally independent given the random variable
Y with possible values in Y , if

FX1,...,Xn|Y=y(x1, . . . , xn) =

m∏
i=1

FXi|Y=y(xi) ∀ xi ∈ Xi, y ∈ Y .
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6.2 Classification Methods Naive Bayes (NB)

Sampling and mixture distribution under Naive Bayes

Denoting, for k ∈ {1, . . . ,K}, the a priori-probability of the kth, category
as πk and the sampling distribution conditional on the the kth category as
fk(x), we get

The probability density/mass function of the sampling distribution

fk(x) = fk1 (x1)× fk2 (x2)× · · · × fkp (xp) ,

where fkj is the probability density function of the j th predictor
among observations in the kth category/class.

and
The mixture distribution

P(Y = k | X = x) =
πk × fk1 (x1)× fk2 (x2)× · · · × fkp (xp)∑K
l=1 πl × fl1 (x1)× fl2 (x2)× · · · × flp (xp)

.
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6.2 Classification Methods Naive Bayes (NB)

How is fkj estimated?

There are several different options to estimate the one-dimensional
probability density/mass functions fkj , k = 1, . . . ,K; j = 1, . . . , p. Some
of the most common options are:

For metric regressors/inputs: Using kernel density estimation (KDE)
or making an assumption about the distributional family.

For categorical regressors/inputs: Using the relative frequency
observed in the training data.
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6.2 Classification Methods Discriminant Analysis

Discriminant Analysis

Unfortunately, Discriminant Analysis is
yet another term that is widely used
without having a universally agreed upon
definition.

The good news are that there are many "special cases" of
discriminant analysis which are well defined and established.

In this course, we will focus on the following:

1 Linear discriminant analysis (LDA) - sometimes used
synonymously to Discriminant analysis

2 Quadratic discriminant analysis (QDA)
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6.2 Classification Methods Discriminant Analysis

Idea behind LDA and QDA

Both Linear and Quadratic discriminant analysis are generative
classification models.

Instead of assuming conditional independence (as in NB), the
underlying assumption in both approaches is that of a Gaussian
sampling distribution, specifically, for k = 1, . . . ,K, µk ∈ Rp and
Σk ∈ Rp×p:

f(x|y = k) =
1

(2π)d/2|Σk|1/2
exp

(
−1

2
(x− µk)

tΣ−1
k (x− µk)

)

While both LDA and QDA allow for varying means µk, the difference
is that in LDA, the covariance is assumed to be constant, i.e.
Σ1 = Σ2 = . . . = ΣK .
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6.2 Classification Methods Discriminant Analysis

Visual comparison of LDA and QDA

Source:

https://deeplearning.buzz/2018/10/02/linear-discriminant-analysis-and-quadratic-discriminant-analysis/
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6.2 Classification Methods Discriminant Analysis

Specific LDA setting I

Linear discriminant analysis (LDA) is the special case when we assume
that the classes have a common covariance matrix Σk = Σ ∈ Rp×p

∀k ∈ {k = . . . ,K}. The log-ratio, is sufficient to compare any two
classes k and l, l, k ∈ {1, . . . ,K}, l ̸= k:

log
Pr(G = k | X = x)

Pr(G = ℓ | X = x)
= log

fk(x)

fℓ(x)
+ log

πk
πℓ

= log
πk
πℓ

− 1

2
(µk + µℓ)

T Σ−1 (µk − µℓ) + xTΣ−1 (µk − µℓ) ,

which is linear in x.

The linear log-odds function implies that the decision boundary
between any pair of classes is linear so all the decision boundaries are
linear.
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6.2 Classification Methods Discriminant Analysis

Specific LDA setting II

Furthermore, maximizing the a posteriori probability
P (Y = k|X = x), k ∈ {1, . . . ,K}, is equivalent to maximizing the
function

dk(x) = log(f(x|k)) + log(p(k)) ,

which is often referred to as discriminant function.

In the case of LDA, the discriminant functions are given by

dk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + log πk ,

- which is again linear in x.

The Bayes decision rule is then given by δ(x) = argmax
k∈{1,...,K}

dk(x).
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6.2 Classification Methods Discriminant Analysis

Specific LDA setting III

Since the parameters of the Gaussian distributions are not known in
practice, they are estimated as follows using the training data of size n:

π̂k = Nk/n, where Nk is the number of class-k observations

µ̂k =
∑

{xi: yi=k}
xi/Nk - i.e. the in-class arithmetic mean

Σ̂ =
∑K

k=1

∑
{xi: yi=k}

(xi − µ̂k) (xi − µ̂k)
T /(n−K) .
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6.2 Classification Methods Discriminant Analysis

Specific LDA setting IV

Visualization of LDA for three classes:

Source: Figure 4.5 of the book https://hastie.su.domains/Papers/ESLII.pdf.

Hannah Schulz-Kümpel Multivariate Verfahren 58 / 73

https://hastie.su.domains/Papers/ESLII.pdf


6.2 Classification Methods Discriminant Analysis

Specific QDA setting

The setting remains the same in quadratic discriminant analysis, but
contrary to LDA, the covariance is assumed to be varying just as the
mean.

While the estimation of π̂k and µ̂k remains the same, the covariance
matrices Σk are now estimated as the in-class sample covariance
matrices.

The resulting quadratic discriminant functions are given by

dk(x) = log(f(x|k)) + log(p(k))

= −1

2
log |Σk| −

1

2
(x− µk)

T Σ−1
k (x− µk) + log πk .

The Bayes decision rule is again given by δ(x) = argmax
k∈{1,...,K}

dk(x).
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6.2 Classification Methods Discriminant Analysis

Conceptual sketch of QDA for two classes
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6.2 Classification Methods Connection between log.reg., NB, LDA, and QDA

Connection between log.reg., NB, LDA, and QDA I
This section is based on pages 158-160 from James, Gareth, et al. An Introduction to Statistical Learning: With

Applications in R. Germany, Springer New York, 2013.

Setting
As before, Y has K classes and an observation is assigned to the class that
maximizes P(Y = k | X = x). Equivalently, we can set K as the baseline
class and assign an observation to the class that maximizes

log

(
P(Y = k | X = x)

P(Y = K | X = x)

)
for k = 1, . . . ,K.
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6.2 Classification Methods Connection between log.reg., NB, LDA, and QDA

Connection between log.reg., NB, LDA, and QDA II
This section is based on pages 158-160 from James, Gareth, et al. An Introduction to Statistical Learning: With

Applications in R. Germany, Springer New York, 2013.

1. Logistic regression: Recall that in (multinomial) logistic regression, the
following holds:

log

(
P(Y = k | X = x)

P(Y = K | X = x)

)
= log

(
pk(X)

pK(x)

)
= η(x) = β0k +

p∑
i=1

βikxi .

2. LDA: Using Bayes’ Theorem, the assumption that the predictors within each
class are drawn from a multivariate normal density with class-specific mean and
shared covariance matrix gives
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6.2 Classification Methods Connection between log.reg., NB, LDA, and QDA

Connection between log.reg., NB, LDA, and QDA III
This section is based on pages 158-160 from James, Gareth, et al. An Introduction to Statistical Learning: With

Applications in R. Germany, Springer New York, 2013.

log

(
P(Y = k | X = x)

P(Y = K | X = x)

)
= log

(
πkfk(x)

πKfK(x)

)

= log

 πk exp
(
− 1

2 (x− µk)
T
Σ−1 (x− µk)

)
πK exp

(
− 1

2 (x− µK)
T
Σ−1 (x− µK)

)


= log

(
πk

πK

)
− 1

2
(x− µk)

T
Σ−1 (x− µk) +

1

2
(x− µK)

T
Σ−1 (x− µK)

= log

(
πk

πK

)
− 1

2
(µk + µK)

T
Σ−1 (µk − µK) + xTΣ−1 (µk − µK)

=ak +
∑p

j=1
bkjxj ,

where ak = log
(

πk

πK

)
− 1

2 (µk + µK)
T
Σ−1 (µk − µK) and bkj is the j th

component of Σ−1 (µk − µK).
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6.2 Classification Methods Connection between log.reg., NB, LDA, and QDA

Connection between log.reg., NB, LDA, and QDA IV
This section is based on pages 158-160 from James, Gareth, et al. An Introduction to Statistical Learning: With

Applications in R. Germany, Springer New York, 2013.

Hence LDA, like logistic regression, assumes that the log odds of the posterior
probabilities is linear in x.

3. QDA: Using similar calculations, we get

log

(
P(Y = k | X = x)

P(Y = K | X = x)

)
= ak +

p∑
j=1

bkjxj +

p∑
j=1

p∑
l=1

ckjlxjxl,

where ak, bkj , and ckjl are functions of πk, πK , µk, µK ,Σk and ΣK . Again, as
the name suggests, QDA assumes that the log odds of the posterior probabilities
is quadratic in x.
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6.2 Classification Methods Connection between log.reg., NB, LDA, and QDA

Connection between log.reg., NB, LDA, and QDA V
This section is based on pages 158-160 from James, Gareth, et al. An Introduction to Statistical Learning: With

Applications in R. Germany, Springer New York, 2013.

4. Naive Bayes: Recall that in this setting, fk(x) is modeled as a product of p
one-dimensional functions fkj (xj) for j = 1, . . . , p. Hence,

log

(
P(Y = k | X = x)

P(Y = K | X = x)

)
= log

(
πkfk(x)

πKfK(x)

)
= log

(
πk

∏p
j=1 fkj (xj)

πK

∏p
j=1 fKj (xj)

)

= log

(
πk

πK

)
+

p∑
j=1

log

(
fkj (xj)

fKj (xj)

)

= ak +

p∑
j=1

gkj (xj) ,

where ak = log
(

πk

πK

)
and gkj (xj) = log

(
fkj(xj)
fKj(xj)

)
. Hence, in this setting we

actually get the form of a generalized additive model!
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6.2 Classification Methods Connection between log.reg., NB, LDA, and QDA

Connection between log.reg., NB, LDA, and QDA VI
This section is based on pages 158-160 from James, Gareth, et al. An Introduction to Statistical Learning: With

Applications in R. Germany, Springer New York, 2013.

From these results, we get the following connections:

The linear form of LDA is identical to the model equation of multinomial
logistic regression; in both cases, log

(
P(Y=k|X=x)
P(Y=K|X=x)

)
is a linear function of

the predictors. In LDA, the coefficients in this linear function are functions of
estimates for πk, πK , µk, µK , and Σ obtained by assuming that X1, . . . , Xp

follow a normal distribution within each class. By contrast, in logistic
regression, the coefficients are chosen to maximize the likelihood function.

⇒ We expect LDA to outperform logistic regression when the normality
assumption (approximately) holds, and we expect logistic regression to
perform better when it does not.
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6.2 Classification Methods Connection between log.reg., NB, LDA, and QDA

Connection between log.reg., NB, LDA, and QDA VII
This section is based on pages 158-160 from James, Gareth, et al. An Introduction to Statistical Learning: With

Applications in R. Germany, Springer New York, 2013.

LDA is a special case of QDA with ckjl = 0 for all j = 1, . . . , p, l = 1, . . . , p,
and k = 1, . . . ,K. (Of course, this is not surprising, since LDA is simply a
restricted version of QDA with Σ1 = · · · = ΣK = Σ.)

Any classifier with a linear decision boundary is a special case of naive Bayes
with gkj (xj) = bkjxj . In particular, this means that LDA is a special case of
naive Bayes!

If we model fkj (xj) in the naive Bayes classifier using a one-dimensional
Gaussian distribution N

(
µkj , σ

2
j

)
, then we end up with gkj (xj) = bkjxj

where bkj = (µkj − µKj) /σ
2
j . In this case, naive Bayes is actually a special

case of LDA with Σ restricted to be a diagonal matrix with j th diagonal
element equal to σ2

j .
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6.2 Classification Methods Connection between log.reg., NB, LDA, and QDA

Connection between log.reg., NB, LDA, and QDA VIII
This section is based on pages 158-160 from James, Gareth, et al. An Introduction to Statistical Learning: With

Applications in R. Germany, Springer New York, 2013.

Neither QDA nor naive Bayes is a special case of the other. Naive Bayes can
produce a more flexible fit, since any choice can be made for gkj (xj).
However, it is restricted to a purely additive fit. By contrast, QDA includes
multiplicative terms of the form ckjlxjxl. Therefore, QDA has the potential
to be more accurate in settings where interactions among the predictors are
important in discriminating between classes.

⇒ None of these methods uniformly dominates the others: in any setting,
the choice of method will depend on the true distribution of the predictors in
each of the K classes, as well as other considerations, such as the values of
n and p. The latter ties into the bias-variance trade-off.
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6.2 Classification Methods Outlook: Decision Trees and SVMs

Outlook: Decision Trees and SVMs

Two more popular classification methods are

1 Decision Trees

2 Support Vector Machines (SVMs)

The next slides will provide a quick outlook.
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6.2 Classification Methods Outlook: Decision Trees and SVMs

Decision trees I

Each internal node
performs a Boolean
test on an input
feature.

The edges are
labelled with the
values of that input
feature.

Each leaf node
specifies a value for
the target feature. Source: Medium
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6.2 Classification Methods Outlook: Decision Trees and SVMs

Decision trees II

Source: https://www.cs.toronto.edu/~axgao/cs486686_f21/lecture_notes/Lecture_07_on_Decision_Trees.pdf
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6.2 Classification Methods Outlook: Decision Trees and SVMs

Support Vector Machines (SVMs) I

SVMs find the optimal hyperplane that separates data points of
different classes with the maximum margin.

The key components are

Hyperplane: A decision boundary that separates different classes in the
feature space.

Margin: The distance between the hyperplane and the closest data
points from either class, known as support vectors.

Support Vectors: Data points that lie closest to the hyperplane and influence
its position and orientation.

Kernel Trick: A method used to transform data into a higher-dimensional
space to make it easier to find a separating hyperplane.
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6.2 Classification Methods Outlook: Decision Trees and SVMs

Support Vector Machines (SVMs) II

Source: https://de.mathworks.com/discovery/support-vector-machine.html
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